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Abstract. We study a model of irreversible investment for a decision-maker who has
the possibility to gradually invest in a project with unknown value. In this setting,
we introduce and explore a feature of “learning-by-doing”, where the learning rate of
the unknown project value is increasing in the decision-maker’s level of investment in
the project. We show that, under some conditions on the functional dependence of
the learning rate on the level of investment (the “signal-to-noise ratio”), the optimal
strategy is to invest gradually in the project so that a two-dimensional sufficient statistic
reflects below a monotone boundary. Moreover, this boundary is characterised as the
solution of a differential problem. Finally, we also formulate and solve a discrete version
of the problem, which mirrors and complements the continuous version.

1. Introduction

Consider a decision-maker who aims to invest optimally in a new project, but who
suffers from incomplete information and does not know the true value of the project.
In the simplest Bayesian setting, we assume that the project value µ has a two-point
prior distribution and can, thus, take two values: µ0 < 0 representing a “bad” project
and µ1 > 0 representing a “good” project. In addition to the prior knowledge of the
distribution of µ, the decision-maker has also access to a stream of noisy observations of
the unknown project value µ, and can thus make further inference about its true value.
Within this set-up with incomplete information, we consider a situation in which the
actions of the decision-maker may affect the magnitude of the noise. More specifically,
we introduce and study a notion of learning-by-doing: by investing more into the
project (i.e., by doing) the decision-maker can reduce the magnitude of the noise in the
observation process, thereby improving the learning rate of the true value of µ. The
decision to increase the level of investment is irreversible, however, and there is thus
a natural trade-off between early investment to increase the learning rate and a more
cautious strategy to avoid investing in a potentially bad project.

We model the above situation with a learning-by-doing feature by introducing an
observation process X = (Xt)t≥0 of the form

(1) dXt = µdt+ f(Ut)dWt,

where W = (Wt)t≥0 is a standard Brownian motion, U = (Ut)t≥0 is a non-decreasing
control process with 0 ≤ U ≤ 1 that describes the level of investment in the project,
and u 7→ f(u) is a given positive and decreasing function (for a more precise description
of f and the set of admissible control processes, see Sections 2-3 below). That is, the
decision-maker observes the process X and may choose to increase the level of investment
U at any time, thereby reducing the noise in the observation process and obtaining a
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better estimate of the true value µ of the project. In this setting, the objective for the
decision-maker is to choose a non-decreasing control U to maximize the expectation

(2) E
[∫ ∞

0
e−rtµ dUt

]
of the true value of accumulated discounted future investments. Note that the opti-
mization of (2) over investment strategies, subject to the learning-by-doing feature as
described in (1), results in an intrinsic “cost of learning”: the decision-maker naturally
wants to improve her learning rate of µ by increasing the control U , but, by doing so,
she may be investing in a bad project (with µ = µ0 < 0), thereby collecting a negative
pay-off. Our problem formulation of irreversible investment with learning-by-doing thus
describes an instance of the classical theme of exploration vs. exploitation.

Intuitively, the set-up with the feature of learning-by-doing described above can be
motivated as follows. An “outsider” (an agent who is not invested at all) may have
access to noisy observations of the true value µ of a certain project, for example by
observing financial statements of companies that are currently operating in a similar line
of business. With no – or little – involvement in the project, however, the outsider has
to rely on publicly available information, and observations of the project value are rather
noisy. On the other hand, with a greater involvement in the project, as measured by the
decision-maker’s investment level, additional private information becomes available and
more precise inference of the project value can be obtained.

For instance, an improved learning rate is a natural ingredient in situations allowing
for project expansion (see Example 1 for a specific formulation). As an example,
consider the renewable energy sector, where a firm invested in wind turbines or solar cell
plants may encounter uncertainties related to factors such as weather patterns and energy
output, as well as wear and tear and maintenance cost. Consequently, the firm has only
access to a noisy stream of observations of the true project value. By gradual project
expansion, however, some of the uncertainty factors are observed with more precision
thanks to a higher experimentation rate, which enables the firm to better assess the
viability of future expansion. A second example involves the launch of a new product or
an existing product into a new market, where the true project value is not known due to
uncertainties in, for example, production costs and demand. Again, project expansion
gives rise to a higher experimentation rate, which leads to less noisy observations of the
project value.

The learning-by-doing mechanism may also be associated with the level of commit-
ment. For example, consider an agent who may invest in a new start-up, whose prof-
itability is uncertain. By increasing the investment level, the agent shows commitment
to the start-up and may to a larger extent gain access to board meetings and other events
where more information is revealed, thereby reducing the level of noise in the observations
of the project value.

1.1. Related literature. Problems of irreversible investment have been widely studied
in the literature on stochastic control, with early references provided by [9] and [19], and
more recent contributions including, among many others, [2], [6], [8] and [12]. Mathe-
matically, the irreversible investment problem described in (1)-(2) (and formulated more
precisely in Section 3 below) is a stochastic singular control problem under incomplete
information, where the chosen control affects the learning rate. While stochastic control
problems with incomplete information have been studied extensively (for early references,
see [17] for a problem of utility maximization, and [7] for an investment timing decision),
works involving control of the learning rate are more rare. Within statistics, a problem
of change-point detection with a controllable learning rate has been studied in [4] (for
reversible controls) and [11] (for irreversible controls), and an estimation problem with



IRREVERSIBLE INVESTMENT WITH LEARNING-BY-DOING 3

controllable learning rate was solved in [10]. In literature on operations management,
related questions of the trade-off between earning and learning have been studied in the
context of dynamic pricing in models with demand uncertainty, see, e.g., [15]. Within
operations research, [16] studies an investment problem similar to ours, but with the
main difference that investment does not affect the learning rate. More specifically, an
investor may at each instant in time choose between a finite set of learning rates, where
a larger learning rate comes with a larger running cost of observation, and where the
unknown return has a two-point distribution. Moreover, the investor may choose an in-
vestment time, at which the optimization ends. For a related work, see also [23]. Finally,
our problem is also related to classical multi-armed bandit problems, where a chosen
strategy affects both learning and earning; see e.g. [14].

We also remark that, with respect to the existing literature of stochastic control prob-
lems where the control affects the learning rate (see, e.g., [4], [10] and [11]), we do not
fix any specific form of the dependence of the learning rate on the control (the so-called
“signal-to-noise ratio” in our problem). Instead, we develop and study a more flexible
set-up by allowing for an arbitrary signal-to-noise ratio and providing sufficient conditions
that guarantee the existence of a solution, which we can explicitly describe.

Since reversible controls are considered in [4], [10] and [16], the sufficient statistic in
those studies consists merely of the conditional probability of one of the two possible
states, and is thus one-dimensional. On the other hand, for irreversible controls (as
in [11], and in the current paper), the sufficient statistic consists of the conditional
probability of one of the states together with the current value of the control, and is thus
two-dimensional.

The epithet “learning-by-doing” has been associated to various problems in the eco-
nomics literature, mainly in settings where an experienced agent has a larger ability than
a less experienced one; for a classical reference, see [1]. One may note that the notion
of “learning-by-doing” as used in [1] could alternatively be described as “improving-by-
doing”, whereas the notion of the present paper could alternatively be referred to as
“learning-faster-by-doing”. Indeed, in [1] the profitability rate is larger for an experi-
enced agent. In contrast, for us the investment level does not influence the project value
µ, but it affects instead the rate with which the project value is revealed to the agent.

1.2. Preview. The remainder of the paper is organized as follows. In Section 2 we
discuss a few aspects of the irreversible investment problem under consideration. Sec-
tion 3 offers a precise mathematical formulation of the problem, using a weak approach.
In Section 4 we provide heuristic reasoning to derive an ordinary differential equation
(ODE) for a boundary, along which a candidate optimal strategy reflects the underlying
sufficient statistic, and Section 5 discusses conditions under which the solution of the
ODE is monotone increasing. In Section 6 we provide the Verification theorem, which
guarantees that the obtained candidate strategy is indeed optimal. In Section 7 we pro-
vide some specific examples for our model with the corresponding illustrations of the
optimal boundary. Finally, in Section 8 we analyze a discrete version of our problem,
which corresponds to situations where the set of possible investment levels is discrete.

2. Some initial considerations

This section discusses a few aspects of the problem formulation in (1)-(2). It also
serves as a bridge between the learning-by-doing problem described in Section 1 and its
rigorous mathematical formulation, which is provided in Section 3.

2.1. Investment costs. In the general formulation (2) above, no investment costs are
included. This, however, is without loss of generality. Indeed, if a constant investment
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cost C > 0 is included in the model, then the expected discounted profits would be

(3) E
[∫ ∞

0
e−rt(µ− C) dUt)

]
.

Consequently, the optimization over controls U of the expression in (3) is of the same
type as in (2), but with µ replaced by µ̃ := µ − C (for a non-degenerate problem one
then needs µ0 < C < µ1).

2.2. Signal-to-noise ratio. Recall the observation process X defined in (1). It is clear

that, given an investment strategy U , it is equivalent to observe either X or X̃ where
(recall that f is positive)

dX̃t :=
dXt − µ0dt

f(Ut)
.

Then,

dX̃t =
µ− µ0

f(Ut)
dt+ dWt

= θρ(Ut)dt+ dWt,(4)

where

(5) θ :=
µ− µ0

µ1 − µ0
=

{
1 if µ = µ1

0 if µ = µ0

and

ρ(u) :=
µ1 − µ0

f(u)

is the signal-to-noise ratio of the problem. In the remainder of the article, we will often
refer to the signal-to-noise ratio function ρ(·) rather than to the noise function f(·) used
above.

2.3. Admissible controls. In our problem formulation above, it is implicitly under-
stood that the control U should be chosen based on available observations of the process
X. On the other hand, the choice of a control U affects the observation process X, cf.
(1) or (4). Because of this cumbersome interplay, special care is needed when describing
the set of admissible controls.

Problems of this type are well-suited for the “weak approach” based on change of
measures and the Girsanov theorem. Such an approach is provided in Section 3.

3. Problem formulation

Let (Ω,F ,P) be a complete probability space, supporting a standard Brownian motion
X and an independent Bernoulli random variable θ with

P(θ = 1) = π = 1− P(θ = 0), π ∈ (0, 1).

Let F = (Ft)t≥0 be the smallest right-continuous filtration to which the process X is
adapted, and G = (Gt)t≥0 the smallest right-continuous filtration to which the pair (X, θ)
is adapted. Denote by A the collection of F-adapted, right-continuous, non-decreasing
processes with values in [0, 1]; for u ∈ [0, 1], denote by Au the sub-collection of controls
with initial value equal to u, i.e.,

(6) Au = {U ∈ A : U0− = u}.
Let ρ : [0, 1] → (0,∞) be a given non-decreasing and bounded function. Then, for any
U ∈ A and t ∈ [0,∞), we can define a measure PU

t ∼ P on (Ω,Gt) by

dPU
t

dP
:= exp

{
θ

∫ t

0
ρ(Us) dXs −

θ

2

∫ t

0
ρ2(Us) ds

}
=: ηUt .
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Setting G∞ := σ(∪0≤t<∞Gt), we may assume the existence of a probability measure PU

on (Ω,G∞) that coincides with PU
t on Gt (this can be guaranteed, e.g., by the theory of

the so called Föllmer measure, cf. [13]). By the Girsanov theorem,

Xt = θ

∫ t

0
ρ(Us) ds+WU

t ,

where WU is a (PU ,G)-Brownian motion. Note that this coincides with the dynamics
of the observation process described in (4), and that ρ is the signal-to-noise ratio of the
problem.

It should be noticed that the law of θ remains the same under PU as under P. Indeed,
denoting by EU the expectation under PU , we have

PU (θ = 1) = EU [1{θ=1}η
U
0 ] = E[1{θ=1}] = P(θ = 1) = π,

where the second equality follows from the fact that θ is G0-measurable.
For any U ∈ A, define the adjusted belief process

ΠU
t := PU (θ = 1|Ft), t ∈ [0,∞).

By the innovations approach to stochastic filtering, the so-called innovations process

ŴU
t := Xt −

∫ t

0
ρ(Us)Π

U
s ds

is a (PU ,F)-Brownian motion, and (see, e.g., [18, Theorem 8.1])

(7) dΠU
t = ρ(Ut)Π

U
t (1−ΠU

t ) dŴ
U
t .

Recall the original problem (2) that we want to solve (cf. also Section 2.2). We note
that conditioning yields

EU

[ ∫ ∞

0
e−rtµ dUt

]
= EU

[ ∫ ∞

0
e−rtEU

[
µ
∣∣Ft

]
dUt

]
= (µ1 − µ0)EU

[ ∫ ∞

0
e−rt(ΠU

t − k) dUt

]
,

where k := −µ0/(µ1−µ0) ∈ (0, 1) and the integral is interpreted in the Riemann-Stieltjes
sense over the interval [0,∞). Therefore, in order to solve our original problem (2), we
define and study the value function

(8) V (u, π) := sup
U∈Au

EU
π

[∫ ∞

0
e−rt(ΠU

t − k) dUt

]
, (u, π) ∈ [0, 1]× (0, 1),

where k ∈ (0, 1) and the sub-index indicates the prior probability that θ = 1.

4. Construction of a candidate solution

In this section we use heuristic arguments to construct a candidate value function V̂
and a candidate optimal strategy Û for the problem (8). Conditions under which Û is

optimal are then provided in Section 6 below, along with the equality V = V̂ .

It is intuitively clear that one should increase an optimal control Û only if ΠÛ is large
enough. Inspired by standard results in singular control, we will construct V̂ using the
Ansatz that there exists an non-decreasing boundary π 7→ h(π) and, for any initial point
(u, π) ∈ [0, 1]× (0, 1), an optimal control that satisfies1

(9) Ût = u ∨ sup
0≤s≤t

h(ΠÛ
s ).

1The existence of a control Û that satisfies equation (9) is left for now. Note that one cannot simply

see (9) as a definition, since Û appears on both sides of the equation; for a formal definition of Û , see
(30) below.
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That is, we postulate that the optimal investment Û is gradually increased in such a way

that the two-dimensional process (Û,ΠÛ ) reflects along the boundary h, with reflection
in the u-direction (see Figure 1); if the initial point (u, π) satisfies u < h(π) then the

construction results in an initial jump in the control of size dÛ0 = h(π)− u.
By the dynamic programming principle, one expects the process

Mt := e−rtV̂ (Ût,Π
Û
t ) +

∫ t

0
e−rs(ΠÛ

s − k) dÛs

to be a PÛ -martingale. This translates into the condition

ρ2(u)

2
π2(1− π)2V̂ππ − rV̂ = 0

in the no-action region

C := {(u, π) : u > h(π)}.

On the boundary ∂C, martingality ofM requires that V̂u+π−k = 0; moreover, optimality
of the boundary is obtained if, in addition,

V̂uπ(h(π), π) + 1 = 0.

The condition on the second mixed derivative of the value function is a recurring condition
for two-dimensional singular control problems (see, e.g., [20], [11],[5]).

Denoting by b := h−1 the inverse of h, we thus formulate the following free-boundary
problem: find (V̂, b) such that

(10)


ρ2(u)
2 π2(1− π)2V̂ππ − rV̂ = 0 π < b(u)

V̂u = k − π π = b(u)

V̂uπ = −1 π = b(u)

V̂ (u, 0+) = 0,

where the last condition corresponds to no further investment in the case when the project
is known to be of the bad type.

0.0 0.2 0.4 0.6 0.8 1.0 u

0.7

0.8

0.9

1.0
π

Figure 1. The trajectory of the pair (U,ΠU ) under the reflecting strategy
(9) in the case ρ2(u) = 1

4(1−0.9u) , k = 0.5 and r = 0.1.
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4.1. Deriving an ODE for the free boundary. The general solution of the ODE in
(10) is

V̂ (u, π) = A(u)(1− π)

(
π

1− π

)γ(u)

+B(u)(1− π)

(
π

1− π

)1−γ(u)

,

where A and B are arbitrary functions and γ(u) > 1 is the unique positive solution of
the quadratic equation

(11) γ2 − γ − 2r

ρ2(u)
= 0.

More explicitly,

(12) γ(u) =
1

2
+

√
ρ2(u) + 8r

4ρ2(u)
.

Throughout Sections 4-7 we work under the following assumption.

Assumption 4.1. The signal-to-noise ratio ρ : [0, 1] → (0,∞) is twice continuously
differentiable, with ρ′(u) > 0 for every u ∈ [0, 1].

Remark 4.2. It is immediate to check that Assumption 4.1 implies that γ : [0, 1] →
(1,∞) is twice continuously differentiable, with γ′(u) < 0 for every u ∈ [0, 1].

In view of the boundary condition at π = 0+, we must have B ≡ 0 in the Ansatz
above. Introducing the function

(13) G(u, π) := (1− π)

(
π

1− π

)γ(u)

,

our Ansatz then takes the form

V̂ (u, π) = A(u)G(u, π)

for π ≤ b(u). The two conditions at the boundary (i.e., V̂u = k − π and V̂uπ = −1) then
become (

Gu(u, b(u)) G(u, b(u))
Guπ(u, b(u)) Gπ(u, b(u))

)(
A(u)
A′(u)

)
=

(
k − b(u)

−1

)
,

which yields (
A
A′

)
=

1

GuGπ −GGuπ

(
Gπ −G

−Guπ Gu

)(
k − b
−1

)
(where the arguments of A = A(u), G = G(u, b(u)), b = b(u) and their derivatives are
omitted). A straightforward calculation leads to

GuGπ −GGuπ =
−γ′

b(1− b)
G2,

so

(14)

(
A
A′

)
=

b(1− b)

γ′G2

(
Gπ −G

−Guπ Gu

)(
b− k
1

)
.

Using

Gπ =
γ − b

b(1− b)
G,

the first equation in (14) simplifies to

(15) A =
(γ + k − 1)b− γk

γ′G
.
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Differentiation then gives

A′ =
γ′((γ + k − 1)b′ + γ′(b− k))G− ((γ + k − 1)b− γk)(γ′′G+ γ′Gu + γ′Gπb

′)

(γ′)2G2
.

Comparing the last equation with the second equation in (14), we find that

γ′((γ + k − 1)b′ + γ′(b− k))G− ((γ + k − 1)b− γk)(γ′′G+ γ′Gu + γ′b′Gπ)

= b(1− b)γ′(Gu − (b− k)Guπ),

which simplifies to

(16) b′(u) = F (u, b(u)),

where

(17) F (u, b) :=
2(b− k)(γ′)2 +

(
γk − (γ + k − 1)b

)
γ′′

−γ(γk − (γ + k − 1)b)− (γ − 1)(1− k)b
· b(1− b)

γ′
.

The ODE (16) is of first order, and we need to specify an appropriate boundary
condition in order to find a unique candidate solution.

Since there is no possibility to improve learning when u = 1, we consider the cor-
responding irreversible investment problem with incomplete information without the
learning-by-doing feature (i.e., in which the signal-to-noise ratio u 7→ ρ(u) is constant).
It is intuitively clear that the two problems should coincide in the limit when u → 1.
We will thus use the obtained value of the boundary at u = 1 for the problem constant
learning rates as the boundary condition for (16).

4.2. Constant learning rates. In this section, we study a simplistic version of our
problem where the signal-to-noise ratio is constant (i.e., investing more does not provide
an improvement in learning) and the decision-maker can only choose the time when to
fully invest in the project. More precisely, for any fixed u ∈ [0, 1], consider the stopping
problem

(18) v(π) = v(π;u) := sup
τ≥0

Eu
π

[
e−rτ (Πu

τ − k)
]
, π ∈ (0, 1),

where the super-indices u denote that the signal-to-noise ratio ρ(·) ≡ ρ(u) ∈ (0,∞) is
constant, and the supremum is taken over F-stopping times.

Remark 4.3. We have the relation V (u, π) ≥ (1 − u)v(π;u), and the gap in the in-
equality represents the additional value that learning-by-doing provides in the problem
formulation (8) compared to a case with a constant learning rate.

By standard methods of optimal stopping, one finds a candidate value function by
solving the following free-boundary problem: construct (v̂, c) such that

(19)


ρ2(u)
2 π2(1− π)2v̂ππ − rv̂ = 0, π < c(u)

v̂ = π − k, π = c(u)
v̂π = 1, π = c(u)

v̂(0+) = 0.

The general solution of the ODE in (19), combined with the boundary condition at
π = 0+, is given by

v̂(π) = D(u)G(u, π),

where G is as in (13) above and D is an arbitrary function. The two boundary conditions
at π = c(u) then yield {

D(u)G(u, c(u)) = c(u)− k

D(u)Gπ(u, c(u)) = 1,
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and using

Gπ(u, π) =
γ(u)− π

π(1− π)
G(u, π)

we find that

(20) c(u) =
kγ(u)

k + γ(u)− 1
.

The candidate value function is thus given by

(21) v̂(π) =

{
c(u)−k

G(u,c(u))G(u, π), π < c(u)

π − k, π ≥ c(u),

with c as in (20).
Since v̂ is convex, we have v̂ ≥ π − k. Moreover, c ≥ k, which implies that

ρ2(u)

2
π2(1− π)2v̂ππ − rv̂ ≤ 0

for π ̸= c. Using standard methods from optimal stopping theory (see, e.g., [21]) the
verification of v̂ = v is then straightforward and we omit the proof.

Proposition 4.4. Let v be the value function defined as in (18), and let v̂ be defined as
in (21). Then v = v̂, and moreover, the stopping time τc := inf{t ≥ 0 : Πu

t ≥ c(u)} is
optimal for (18).

5. A study of the ODE for the boundary

In this section we study the ODE (16). In particular, we first show that, when paired
with its boundary condition derived in the previous section, it has a unique solution.
Moreover, the heuristic derivation of (16) uses the assumption that the boundary b is
monotone, so we also provide conditions under which the solution of the ODE is indeed
monotone.

Consider the differential problem

(22)

{
b′(u) = F (u, b(u)), u ∈ (0, 1)

b(1) = c(1),

where we recall from (17) that

(23) F (u, b) =
2(b− k)(γ′)2 +

(
γk − (γ + k − 1)b

)
γ′′

−γ(γk − (γ + k − 1)b)− (γ − 1)(1− k)b
· b(1− b)

γ′

and where the boundary condition at u = 1 is given by

b(1) = c(1) =
kγ(1)

k + γ(1)− 1
> k,

cf. (20).

Proposition 5.1. The ODE (22) has a unique solution b on [0, 1]. Moreover,

0 < b(u) < c(u)

for u ∈ [0, 1).

Proof. First note that the denominator of F is bounded away from 0 on the region

O := {(u, b) ∈ [0, 1]2 : b ≤ c(u)}.
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Let F̃ be a modification of F which coincides with F on O, and is Lipschitz continuous
on [0, 1] × R. It then follows from an application of the Picard-Lindelöf theorem the

existence of a unique solution b̃ of{
b̃′(u) = F̃ (u, b̃(u)), u ∈ (0, 1)

b̃(1) = c(1).

By straightforward differentiation,

c′(u) =
−k(1− k)γ′

(γ + k − 1)2

and

F (u, c(u)) =
2(c− k)γ′(1− c)

−(γ − 1)(1− k)
= 2c′(u) > c′(u).

Consequently, for every u ∈ [0, 1],

(24) F (u, c(u)) > c′(u) > 0.

Therefore, b̃(u) ≤ c(u) for all u ∈ [0, 1]. Indeed, assuming that

u0 := sup{u ∈ [0, 1) : b̃(u) = c(u)} ≥ 0,

we must have, by continuity,

F (u0, c(u0)) = F (u0, b̃(u0)) = b̃′(u0) ≤ c′(u0).

However, this contradicts (24), which proves that b̃(u) < c(u) for all u ∈ [0, 1).
Similarly, F (u, b) ≤ Db for some constant D > 0, so by comparison we find that

b̃(u) ≥ b̃(1)e−D(1−u) > 0. Since (u, b̃(u)) ∈ O, and since F̃ ≡ F on O, the result
follows. □

We next study monotonicity properties of b. To do so, we need to investigate the sign
of the function F in (23). Recall, from Proposition 5.1, that 0 < b(u) ≤ c(u) for every
u ∈ [0, 1]. As a consequence,

−γ(γk − (γ + k − 1)b(u))− (γ − 1)(1− k)b(u) < 0

and so the sign of b′(u) = F (u, b(u)) coincides with the sign of the function

H(u, π) := 2(π − k)(γ′)2 +
(
γk − (γ + k − 1)π

)
γ′′

=
(
2(γ′)2 − γ′′γ + (1− k)γ′′

)
π −

(
2(γ′)2 − γ′′γ

)
k

evaluated at (u, b(u)). In particular, b′(u) > 0 if and only if H(u, b(u)) > 0.
Note that H is affine in π, with H(u, c(u)) = 2(c(u) − k)(γ′)2 > 0 and H(u, 0) =

−(2(γ′)2 − γ′′γ)k. Consequently, if H(u, 0) ≥ 0, then b is automatically monotone in-
creasing.

Proposition 5.2. Assume that, for every u ∈ [0, 1],

(25) 2(γ′(u))2 − γ(u)γ′′(u) ≤ 0.

Then, the solution b of (22) satisfies b′(u) > 0 for all u ∈ [0, 1].

Proof. If (25) holds, then F (u, π) > 0 at all points (u, π) with 0 < π < c(u). Conse-
quently, b′(u) > 0. □

Next, assume that 2(γ′(u))2 − γ(u)γ′′(u) > 0 for every u ∈ [0, 1] and define

(26) B(u) :=
2(γ′(u))2 − γ(u)γ′′(u)

2(γ′(u))2 − γ(u)γ′′(u) + (1− k)γ′′(u)
k, u ∈ [0, 1].

Then, 0 < B(u) < c(u) and H(u,B(u)) = 0.
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Proposition 5.3. Assume that, for every u ∈ [0, 1],

(27) 2(γ′(u))2 − γ(u)γ′′(u) > 0,

and B′(u) > 0. Then, the solution b of (22) satisfies b′(u) > 0 and b(u) > B(u) for all
u ∈ [0, 1].

Proof. Under the condition (27) we have H(u, 0) < 0, and consequently F (u, π) > 0 if
and only if π > B(u). Therefore, it suffices to show that b(u) > B(u).

Define

u0 := sup{u ∈ [0, 1] : b(u) = B(u)}
and assume, to reach a contradiction, that u0 ≥ 0. Since b(1) = c(1) > B(1), by
continuity, we must have u0 < 1. Moreover, by the definition of u0, we must have
b′(u0) ≥ B′(u0). However, this contradicts

b′(u0) = F (u0, b(u0)) = 0 < B′(u0).

Consequently, b(u) > B(u) for all u ∈ [0, 1] and so b′(u) > 0. □

Remark 5.4. We note that condition (25) requires that γ is “sufficiently” convex,
whereas condition (27) holds when γ is either concave or “mildly” convex. This depends,
from (12), on the form of the signal-to-noise ratio.

Since it will be important to determinate whether b(u) ≥ k for every u ∈ [0, 1] (see
Proposition 6.1 and Theorem 6.2 below), we enunciate the following corollary.

Corollary 5.5. Assume that γ is concave and B′ > 0. Then, the solution b of (22)
satisfies b′(u) > 0 and b(u) > k for all u ∈ [0, 1].

Proof. The result directly follows from Proposition 5.3 and the fact that, if γ is concave,
then B(u) > k for every u ∈ [0, 1]. □

To guarantee the monotonicity of B needed for Proposition 5.3 and Corollary 5.5, we
have the following simple result.

Proposition 5.6. Assume that γ is C3([0, 1]), that γ′′(u) < 0 for u ∈ [0, 1], and that γ
satisfies

(28) 3(γ′′(u))2 < 2γ′(u)γ′′′(u)

for all u ∈ [0, 1]. Then, B in (26) is strictly increasing, i.e., B′ > 0.

Proof. From H(u,B(u)) = 0, we have

B′(u) = −Hu(u,B(u))

Hπ(u,B(u))
.

If γ is concave, then Hπ(u, π) > 0 so it suffices to show that Hu(u,B(u)) < 0. Differen-
tiation yields

Hu(u,B(u)) = 3(B(u)− k)γ′γ′′ + (γk − (γ + k − 1)B(u))γ′′′

= 3(B(u)− k)γ′γ′′ − 2(B(u)− k)
(γ′)2γ′′′

γ′′

= (B(u)− k)
γ′

γ′′
(3(γ′′)2 − 2γ′γ′′′) < 0,

where we used in the second equality that H(u,B(u)) = 0, and the inequality follows
from (28) and the fact that B ≥ k since γ is concave. It follows that B′ > 0. □

Remark 5.7. Figure 2 shows that the solution b to the ODE (22) is not always monotone.
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0.0 0.2 0.4 0.6 0.8 1.0 u
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π

Figure 2. The solution b to the ODE (22) (solid black), the curve B (red)
and the threshold k (dashed black), in the case ρ2(u) = 1

4(1−0.1u−0.8u2)
,

k = 0.5 and r = 0.1.

6. Verification

We now formally construct the candidate optimal strategy, heuristically introduced in
(9), that performs reflection along the boundary b (recall Figure 1). To do that, assume
that the solution b of (22) is strictly increasing; sufficient conditions for this monotonicity
were provided in Section 5 above. Recall that h = b−1 denotes the inverse of b; it is defined
on [b(0), b(1)], and we extend it to (0, 1) so that h(π) = 1 for π > b(1) and h(π) = 0 for
π < b(0).

For any fixed (u, π) ∈ [0, 1] × (0, 1), we define the candidate optimal strategy Û , to
perform reflection along b, as follows. Denote by C([0,∞)) the space of continuous

functions from [0,∞) to [0, 1] and define the map Ũ : [0,∞)× C([0,∞)) → [0, 1] by

Ũt(ω) := u ∨ h

(
sup
0≤s≤t

ωs

)
,

which will serve as the feed-back map of the optimal control. Now consider (cf. (7)) the
stochastic differential equation (SDE)

(29) dPt = −ρ2(Ũt(P ))P 2
t (1− Pt) dt+ ρ(Ũt(P ))Pt(1− Pt) dXt,

with P0 = π. The drift and diffusion coefficients of the SDE (29) satisfy the (locally)
Lipschitz conditions of, e.g., [22, Ch. V, Th. 12.1] and thus the SDE (29) admits a unique
strong solution P = (Pt)t≥0. Then, define the candidate optimal control by

(30) Û0− = u and Ût := Ũt(P ), t ≥ 0.

Since P is F-adapted, we have that Û ∈ Au, as defined in (6). Recall that, by (7), we
also have

dΠÛ
t = −ρ2(Ût)(Π

Û
t )

2(1−ΠÛ
t ) dt+ ρ(Ût)Π

Û
t (1−ΠÛ

t ) dXt

i.e., ΠÛ satisfies (29) and so, by uniqueness, ΠÛ and P are indistinguishable. Notice that
this also confirms our conjecture in (9).

Next, we define the candidate value function V̂ : [0, 1]× (0, 1) → R by

V̂ (u, π) :=

{
A(u)G(u, π), π ≤ b(u)

A(h(π))G(h(π), π) + (π − k)(h(π)− u), π > b(u),
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where

A(u) =
(γ(u) + k − 1)b(u)− γ(u)k

γ′(u)G(u, b(u))
,

(cf. (15)) and G is as in (13). In this way, V̂ is continuous. We now show some further
properties it satisfies, which are essential to obtain the Verification theorem.

Proposition 6.1. Assume that b is strictly increasing on [0, 1]. We have that

V̂ ∈ C1,2([0, 1]× (0, 1)),

with V̂u ≤ k − π. Moreover, if b(u) ≥ k for every u ∈ [0, 1] or if (25) holds, then

(31)
ρ2

2
π2(1− π)2V̂ππ − rV̂ ≤ 0.

Proof. First, we study differentiability of V̂ . It is clear that V̂ is of class C1 below the
boundary. Moreover, V̂u(u, b(u)−) = k − b(u) by construction (recall (10)), and since V̂

is extended linearly in u with slope k − π for π > b(u), it follows that V̂u is continuous.

More precisely, for (u, π) with b(u) < π, we have V̂ (u, π) = V̂ (u0, π) + (π − k)(u0 − u)
where u0 := h(π), and so

(32) V̂π(u, π) = V̂π(u0, π) + u0 − u

since V̂u(u0, π) = k − π. Thus, V̂ ∈ C1([0, 1]× (0, 1)).

We now check that V̂u ≤ k− π. We clearly have V̂u = k− π above the boundary, so it
remains to treat points below the boundary. For π < b(u), we have

V̂u(u, π) = A′(u)G(u, π) +A(u)Gu(u, π)

and

V̂uπ(u, π) = A′(u)Gπ(u, π) +A(u)Guπ(u, π).

Since

Gπ(u, π) =
γ(u)− π

π(1− π)
G(u, π) and Guπ(u, π) =

γ(u)− π

π(1− π)
Gu(u, π) +

γ′(u)

π(1− π)
G(u, π),

we obtain that

(33) V̂uπ(u, π) =
γ(u)− π

π(1− π)
V̂u(u, π) +

γ′(u)

π(1− π)
A(u)G(u, π).

Now assume, to reach a contradiction, that there exists (u, π0) ∈ [0, 1] × (0, 1) with

π0 < b(u) such that V̂u(u, π0) > k − π0. We then obtain from (33) and by (15) that

V̂uπ(u, π0) >
γ(u)− π0
π0(1− π0)

(k − π0) +
(γ(u) + k − 1)b(u)− kγ(u)

π0(1− π0)

G(u, π0)

G(u, b(u))

≥ γ(u)− π0
π0(1− π0)

(k − π0) +
(γ(u) + k − 1)b(u)− kγ(u)

π0(1− π0)

=
(γ(u) + k − 1)(b(u)− π0)

π0(1− π0)
− 1 > −1.

Consequently, π 7→ V̂u(u, π) + π − k is positive and increasing on (π0, b(u)), which con-

tradicts V̂u(u, b(u)) = k − b(u). It follows that V̂u ≤ k − π everywhere.

Differentiating (32) once more with respect to π and using V̂uπ = −1 along the bound-
ary (recall (10)), yields

V̂ππ(u, π) = V̂ππ(u0, π),

which shows that V̂ππ is continuous.
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Finally, (31) holds with equality below the boundary by construction, and above the
boundary we have

ρ2(u)

2
π2(1− π)2V̂ππ(u, π)− rV̂ (u, π)

=
ρ2(u)

2
π2(1− π)2V̂ππ(u0, π)− r(V̂ (u0, π) + (π − k)(u0 − u))

=

(
ρ2(u)

ρ2(u0)
− 1

)
rA(u0)G(u0, π)− r(π − k)(u0 − u).

Thus, if π ≥ b(u) ≥ k, then both terms are negative, and (31) follows.
Similarly, if (25) holds, using the expression (15) for A, we need to check that(

ρ2(u)

ρ2(u0)
− 1

)
γ0k − (γ0 + k − 1)π

−γ′0
+ (π − k)(u− u0)

=

(
γ20 − γ0

γ2(u)− γ(u)
− 1

)
γ0k − (γ0 + k − 1)π

−γ′0
+ (π − k)(u− u0) ≤ 0,

where γ0 := γ(u0) and γ′0 := γ′(u0). Since γ > γ0, we have

γ20 − γ0
γ2 − γ

≤ γ0
γ
,

so it then suffices to show that

f(u) :=

(
γ0
γ(u)

− 1

)
γ0k − (γ0 + k − 1)π

−γ′0
+ (π − k)(u− u0) ≤ 0.

However, it is clear that f(u0) = 0; also,

f ′(u0) =
(1− k)π

γ0
> 0

and f is concave by (25) and the fact that π = b(u0) ≤ c(u0). Consequently, f(u) ≤ 0
for u ≤ u0, and (31) holds. □

The results of Proposition 6.1 lead to the Verification theorem, which we now present.

Theorem 6.2. Let b be the solution of the differential problem (22). Assume that b is

strictly increasing and either b(u) ≥ k for every u ∈ [0, 1] or (25) holds. Then, V = V̂

and the strategy Û is optimal in (8).

Proof. Let U ∈ Au be an arbitrary strategy and let

Yt := Y U
t := e−rtV̂ (Ut,Π

U
t ) +

∫ t

0
e−rs

(
ΠU

s − k
)
dUs

for t ≥ 0−. By Proposition 6.1, we can apply Itô’s formula (for jump processes) to Y
and obtain

dYt = e−rt

(
1

2
ρ2(Ut)Π

2
t (1−Πt)

2V̂ππ(Ut,Πt)− rV̂ (Ut,Πt)

)
dt+ e−rt(Πt − k)dUt

+ e−rtV̂u(Ut,Πt) dU
c
t + e−rt

(
V̂ (Ut,Πt)− V̂ (Ut−,Πt)

)
+ e−rtV̂π(Ut,Πt) dΠt,

where U c denotes the continuous part of U and Π := ΠU . Here, the first term is non-
positive by Proposition 6.1, and V̂u ≤ k−π gives that the next three ones are non-positive
together. Moreover, (recall (7))∫ t

0
e−rsV̂π(Us,Πs)dΠs =

∫ t

0
e−rsρ(Us)Πs(1−Πs)V̂π(Us,Πs)dŴ

U
s
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is a (PU ,F)-martingale since V̂π and ρ are bounded. Thus, the process Y is a (PU ,F)-
supermartingale on [0−,∞), and since Y is lower bounded it is also a (PU ,F)-supermartingale
on [0−,∞]. It follows that

V̂ (u, π) = Y0− ≥ EU
π

[
Y∞
]
= EU

π

[ ∫ ∞

0
e−rt

(
ΠU

t − k
)
dUt

]
.

Since U ∈ Au is arbitrary, it follows that V̂ ≥ V .
To prove the reverse inequality, we consider the strategy Û as in (30) (recall also (9) for

an explicit form) and denote Π := ΠÛ , so that (Û,Π) always stays below the boundary

b at all times t with 0 ≤ t ≤ inf{s ≥ 0 : Ûs = 1}. Then, by construction,

1

2
ρ2(Ût)Π

2
t (1−Πt)

2V̂ππ(Ût,Πt)− rV̂ (Ût,Πt) = 0

and
V̂u(Ût,Πt) dÛ

c
t = (k −Πt) dÛ

c
t .

Moreover, at t = 0, if the initial point (u, π) satisfies u < h(π), there occurs an initial

and bounded jump in Û of size dÛ0 = h(π) − u, but no additional jumps occur. Since

V̂ (u, π) = V̂ (h(π), π) + (π − k)(h(π)− u) for u < h(π), we have that

e−rt(Πt − k)dÛt + e−rtV̂u(Ût,Πt) dÛ
c
t + e−rt

(
V̂ (Ût,Πt)− V̂ (Ût−,Πt)

)
= 0.

Thus, by Itô’s formula, the process Y = Y Û is a (PÛ ,F)-martingale. Since it is bounded,

it is a (PÛ ,F)-martingale also on [0−,∞]. It follows that

V̂ (u, π) = Y Û
0 = EÛ

π

[
Y∞
]
= EÛ

π

[ ∫ ∞

0
e−rt (Πt − k) dÛt

]
.

Consequently, V̂ ≤ V .
Combining the two inequalities, it follows that V ≡ V̂ , and Û is optimal in (8). □

Remark 6.3. Theorem 6.2 shows that we can determine the solution to our problem
when b is increasing and either b(u) ≥ k for every u ∈ [0, 1] or (25) holds. Whether these
conditions are satisfied depend on the form of the signal-to-noise ratio ρ and in Section 5
we have obtained some sufficient conditions that satisfy the hypotheses of Theorem 6.2
(recall, e.g., Corollary 5.5 and Proposition 5.6). In the next section we will provide some
specific forms of ρ that fulfill the aforementioned conditions and, in particular, we will
show that there are some choices of ρ under which (25) holds but b(u) < k for every
u ∈ [0, u0) and some u0 ∈ (0, 1) (see Figure 4).

7. Examples

In this section we provide a few examples for our model.

Example 1. (Project expansion). In this example we discuss a simplistic model
for project expansion. To do that, assume that a decision-maker runs a business with
unknown value µ and has access to noisy observations described by

dX0
t = ρθ dt+ dW 0

t ,

where ρ > 0 is a given constant, θ = (µ−µ0)/(µ1−µ0) (recall (5)) and W 0 is a Brownian
motion. Moreover, assume that the decision-maker has the possibility to expand their
activities by starting another identical business, but with independent noise. Thus, in
addition to dX0

t , observations of

dX1
t = ρθ dt+ dW 1

t

become available after expansion, where W 1 is a Brownian motion independent of W 0.
Note that the drifts contain the same random factor θ, and thus the learning rate is
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larger after expansion. More specifically, observing dX0
t and dX1

t provides the same
information as observing dXt := dX0

t + dX1
t = 2ρθdt+

√
2dWt, where W is a Brownian

motion. Consequently, the signal-to-noise ratio increased from ρ to
√
2ρ after expansion.

In a continuous setting, the above example generalizes to a signal-to-noise ratio ρ(u) =
C
√
u. It is straightforward to check that (25) holds for this ρ, so Theorem 6.2 applies.

Example 2. (Linear noise function). For an illustration of the optimal reflecting
boundary, we consider a special case in which f2(u) is linear, i.e., f(u) =

√
D1 −D2u

with 0 < D2 < D1. Then,

ρ2(u) =
C

1−Du

for some constants C > 0 and D ∈ (0, 1). Differentiation of (11) yields

γ′′(u) =
−2(γ′(u))2

2γ(u)− 1
< 0.

Therefore, the ODE (22) becomes{
b′ = (3γ+k−2)b−(3γ−1)k

(γ+k−1)(γ−1)b−γk(γ−b) ·
2γ′b(1−b)

2γ−1 , u ∈ (0, 1)

b(1) = c(1).

We then have that the 0-level curve B of F is given by

B(u) =
(3γ − 1)k

3γ + k − 2
> k

and we note that B is monotone increasing with B′ > 0. The existence of a monotone
solution b to (22) thus follows by Corollary 5.5, and we have that b(u) > k for every
u ∈ [0, 1]. Therefore, Theorem 6.2 applies and the optimality of the solution is verified.
See Figure 3 for a plot of the optimal boundary b.

0.0 0.2 0.4 0.6 0.8 1.0 u
0.4

0.6

0.8

1.0

π

Figure 3. The optimal reflecting boundary b (solid black), the curve B
(red) and the threshold k (dashed black) in the case ρ2(u) = 1

4(1−0.9u) ,

k = 0.5 and r = 0.1.

We next provide an example in which the optimal investment boundary b goes below
the level k. Notice, from (8), that increasing the level of investment when Π is below
k yields an instantaneous negative reward. The decision-maker should thus sometimes
expand the project even though the current estimate of the project value is negative.
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Example 3. (b(u) < k). Consider the case

γ(u) =
1.25

u+ 0.2

for u ∈ [0, 1]. It can be verified that γ satisfies (25). Hence b′(u) > 0 for all u ∈ [0, 1],
and Theorem 6.2 applies. Figure 4 shows that the optimal boundary b goes below the
threshold k for small values of u. This is remarkable since it corresponds to an instan-
taneous negative reward for such values (recall (8)). The explanation for this seemingly
irrational behaviour is that the negative reward is compensated by a comparatively large
value of future learning due to an increased learning rate.

0.0 0.2 0.4 0.6 0.8 1.0u

0.5

0.6

0.7

0.8

0.9

1.0
π

Figure 4. The optimal reflecting boundary b (solid black) and the
threshold k (dashed black) in the case γ(u) = 1.25/(u+0.2) and k = 0.5.

8. The discrete case

In this section we study a similar problem of irreversible investment under incomplete
information and learning-by-doing, but where the control U is restricted to take values
in a discrete subset of [0, 1]. In this setting, we analyze under what conditions the
related investment boundary is monotone in the number of remaining exercise rights,
and we characterize the optimal strategy. The analysis of the discrete case mirrors,
and complements, the continuous version of the problem of irreversible investment, as
presented above.

To introduce the problem, let an integer N ≥ 0 be given, and define un = n
N for

n = 0, ..., N . We study the following recursively defined problem:

(34)

 VN (π) = supτ EuN
π

[
e−rτ (ΠuN

τ − k)
]
,

Vn(π) = supτ Eun
π

[
e−rτ

(
Vn+1(Π

un
τ ) + Πun

τ − k
) ]

, n = 0, ..., N − 1.

Remark 8.1. The recursively defined optimization problem (34) is a discrete version
of the continuous formulation (8). Indeed, if the set of admissible controls A is further
restricted to take values only in {un}Nn=0, then problem (8) reduces to a multiple stopping
problem. By standard literature on Markovian multiple stopping problems (see, e.g., [3]),
such problems can be formulated recursively as in (34).

As in the continuous case treated above, we first construct candidate solutions V̂n(π),

n = 0, ..., N , and we then verify that V̂n = Vn. The candidate solution is constructed
using an Ansatz that there exists an increasing sequence {bn}Nn=0 such that

τn := inf{t ≥ 0 : Πun
t ≥ bn}
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is optimal for Vn. The candidate solutions will be described using the notation

Gn(π) := G(un, π),

where G is as in (13) with γ = γn := γ(un). We also let

cn := c(un) =
γnk

γn + k − 1
.

8.1. Solving the discrete problem. First consider the last step, i.e., the stopping
problem

VN (π) = sup
τ

EuN
π

[
e−rτ (ΠuN

τ − k)
]
.

This is a standard call option on the process ΠuN , and was already treated in Subsec-
tion 4.2). In fact,

VN (π) =

{
ANGN (π) π < bN

π − k π ≥ bN ,

where

bN =
γNk

γN + k − 1
=: cN

and AN is a constant.
Next we treat the case n = 0, . . . , N −1 using induction. Assume that there are points

bn+1 ≤ bn+2 ≤ ... ≤ bN such that

(35) Vm(π) =

{
AmGm(π) π < bm

π − k + Vm+1(π) π ≥ bm,

for m = n+ 1, ..., N , where VN+1 ≡ 0. Also assume that

(36) (γm + k − 1)bm − γmk + (γm − γm+1)Vm+1(bm) = 0.

Remark 8.2. Equation (36) holds for m = N with bN = cN , and for m ≤ N − 1 it is a
consequence of the smooth fit condition and the assumed monotonicity of the boundary.
Indeed, the smooth fit condition at bm gives the equation system{

AmGm(bm) = bm − k + Vm+1(bm)
AmG′

m(bm) = 1 + V ′
m+1(bm),

which yields

(37) (γm + k − 1)bm − γmk = bm(1− bm)V ′
m+1(bm)− (γm − bm)Vm+1(bm).

Now, if bm ≤ bm+1, then

V ′
m+1(bm) =

γm+1 − bm
bm(1− bm)

Vm+1(bm),

and (37) reduces to (36).

We now provide conditions under which also Vn has the form

(38) V̂n(π) =

{
AnGn(π) π < bn

π − k + Vn+1(π) π ≥ bn,

where the boundary point bn satisfies (39) below (which is (36) with m = n). To do
that, first note that if there exists a boundary point bn as in (38), then the smooth fit
condition reads {

AnGn(bn) = bn − k + Vn+1(bn)
AnG

′
n(bn) = 1 + V ′

n+1(bn),

which reduces (as in Remark 8.2) to

(39) (γn + k − 1)bn − γnk + (γn − γn+1)Vn+1(bn) = 0,
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provided bn ≤ bn+1. Denote

(40) fn(b) := (γn + k − 1)b− γnk + (γn − γn+1)Vn+1(b),

and let similarly

fm(b) := (γm + k − 1)b− γmk + (γm − γm+1)Vm+1(b)

for m = n+1, ..., N so that fm(bm) = 0. Note that fn is convex, with fn(0) = −γnk < 0
and

fn(cn) = (γn − γn+1)Vn+1(cn) > 0.

Consequently, there exists a unique bn ∈ (0, cn) such that fn(bn) = 0, which defines bn.

Remark 8.3. We emphasize that the derived form of fn (as given in (40)) uses that
bn ≤ bn+1; in particular, if the solution bn of fn(bn) = 0 satisfies bn > bn+1, then the
smooth fit condition at bn is not guaranteed. We also note that monotonicity of the
boundary (i.e., bn ≤ bn+1) is equivalent to fn(bn+1) ≥ 0.

Proposition 8.4. Assume that bn ≤ bn+1. Then, V̂n = Vn.

Proof. For the verification of V̂n = Vn, we first check that

(41) V̂n(π) ≥ Vn+1(π) + π − k.

Equation (41) holds automatically (with equality) for π ≥ bn. To see that it holds also

below bn, assume that V̂n(π0) < Vn+1(π0) + π0 − k for some π0 < bn. We then have that

V̂ ′
n(π0)− V ′

n+1(π0)− 1 =
γn − π0

π0(1− π0)
V̂n(π0)−

γn+1 − π0
π0(1− π0)

Vn+1(π0)− 1

<
γn − γn+1

π0(1− π0)
Vn+1(π0) +

(γn − π0)(π0 − k)− π0(1− π0)

π0(1− π0)

=
1

π0(1− π0)
fn(π0) ≤ 0,

where the last inequality follows from π0 ≤ bn. Thus, if V̂n(π0) < Vn+1(π0) + π0 − k at

some point π0 < bn, then V̂n(π)− Vn+1(π)− (π − k) is decreasing for π ∈ [π0, bn], which

contradicts the relation V̂n(bn) = Vn+1(bn) + bn − k; consequently, (41) holds.
To complete a verification argument, we also need

(42) LnV̂n :=
ρ2n
2
π2(1− π)2V̂ ′′

n − rV̂n ≤ 0

for π ̸∈ {bn, bn+1}. The inequality (42) holds automatically (with equality) for π < bn,

so we only need to check it above bn. For π > bn we have V̂n = Vn+1 + π − k, so

LnV̂n = ρ2n
2 π2(1− π)2V ′′

n+1 − rVn+1 − r(π − k)

= ρ2n
ρ2n+1

Ln+1Vn+1 − r
(
1− ρ2n

ρ2n+1

)
Vn+1 − r(π − k)

≤ −r
(
1− ρ2n

ρ2n+1

)
Vn+1 − r(π − k),

provided π ̸= bn+1 (and where Ln+1Vn+1 :=
ρ2n+1

2 π2(1 − π)2V ′′
n+1 − rVn+1 ≤ 0). Since

both Vn+1 and π 7→ π − k are increasing, we note that

LnV̂n(π) ≤ −r

((
1− ρ2n

ρ2n+1

)
Vn+1(bn) + bn − k

)
= −r

(
γn+γn+1−1

γ2
n−γn

(γn − γn+1)Vn+1(bn) + bn − k
)
.

Using fn(bn) = 0, we have

(γn − γn+1)Vn+1(bn) = γnk − (γn + k − 1)bn
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and so

LnVn(π) ≤ −r

(
γn+1(k − bn)

γn − 1
+

γn + γn+1 − 1

γ2n − γn
(1− k)bn

)
≤ −r

(
γn+1k − (γn+1 + k − 1)bn

γn − 1

)
≤ 0,

since bn ≤ cn ≤ cn+1. Consequently, (42) holds for all π ̸∈ {bn, bn+1}. Using (41) and

(42), a standard verification procedure shows that V̂n ≡ Vn. □

Proposition 8.4 completes the inductive construction and verification of the value func-
tion Vn. As remarked above, however, the construction depends on the assumption
bn ≤ bn+1. In the next subsection we provide conditions under which the boundary is
indeed monotone.

8.2. Monotonicity of the boundary. First note that

fN−1(cN−1) = (γN−1 − γN )VN (cN−1) > 0,

so bN−1 ∈ (0, cN−1). Since cN−1 < cN = bN , we automatically have bN−1 ≤ bN .
Now, for n ∈ {0, ..., N − 2}, assume that bn+1 ≤ ... ≤ bN have been found such that

(35) and (36) hold for m = n+ 1, ..., N . We then have

(43) Vn+1(bn+1) = bn+1 − k + Vn+2(bn+1),

and from fn+1(bn+1) = 0 we get

(44) Vn+2(bn+1) =
γn+1k − (γn+1 + k − 1)bn+1

γn+1 − γn+2
.

From the identities (43) and (44), we thus obtain

fn(bn+1) = 2(bn+1−k)(γn−γn+1)+
(γn+1k − (γn+1 + k − 1)bn+1)(γn − 2γn+1 + γn+2)

γn+1 − γn+2
.

Proposition 8.5. If

(45) 2(γn − γn+1)(γn+1 − γn+2)− (γn − 2γn+1 + γn+2)γn+1 ≤ 0,

then bn ≤ bn+1.

Proof. Define

Hn(b) := 2(b− k)(γn − γn+1) +
(γn+1k − (γn+1 + k − 1)b)(γn − 2γn+1 + γn+2)

γn+1 − γn+2

so that Hn(bn+1) = fn(bn+1). Then

Hn(cn+1) = 2(cn+1 − k)(γn − γn+1) > 0,

and by (45) we have

Hn(0) = − k

γn+1 − γn+2

(
(γn − γn+1)(γn+1 − γn+2)− (γn − 2γn+1 + γn+2)γn+1

)
≥ 0.

Since Hn is affine, it follows that Hn(b) > 0 for all b ∈ (0, cn+1). Thus fn(bn+1) ≥ 0, and
the result follows. □

Remark 8.6. Note that the condition (45) is a discrete version of (25).

Figure 5 illustrates the set of the optimal boundaries bn, n = 0, . . . , N for γn that is a
discrete version of the specification used in Figure 4.
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Figure 5. Optimal boundaries bn (black dots), points cn (blue dots), and
the threshold k (black dashed) with γn = 1.25/

(
n/5 + 0.2

)
. Remaining

parameters are k = 0.5 and N = 5. Note that γn satisfies condition (45).
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[20] A. Merhi and M. Zervos. A model for reversible investment capacity expansion. SIAM J. Control
Optim., 46(3):839–876, 2007.

[21] G. Peskir and A. Shiryaev. Optimal stopping and free-boundary problems. Lectures in Mathematics
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